MODES OF STABILITY LOSS IN AN ELASTIC ROD UNDER IMPACT

V. M. Komev

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 3, pp. 63~66, 1968

If an elastic system is acted on by a shock load considerably in ex-
cess of the first critical value, the rate of increase in the bending is
largest in a form differing from the first [1]. The character of the mo-
tion is substantially affected by the wave set up by the sudden applica~
tion of the load [2, 3].

We can avoid assuming equal orders of smallness for the perturba-
tions corresponding to various forms by asymptotic consideration of
the deflection of an elastic hinged rod with an initial irregularity; we
use expansion with respect to the inherent forms of loss of stability over
a variable interval [4]. A simplified method is givenbelow for deducing
the curved form of the rod under impact as a system with one degree
of freedom. This form is very similar to that found in tests on shock
loading of rods [3]. An elastic three-layer rod is envisaged, and also a
uniform ring with specific conditions of loading.

1. The following is {5] the system of equations that takes account
of interaction of longitudinal and transverse vibrations in a uniform
elastic rod with an initial irregularity:

Elw,xxxx+EF(u,xw,x).x+pFw, =11, (1.1)

U = pEu 4 (1.2)

Here w and u are the normal and longitudinal displacements of a
cross-section, x is the longitudinal coordinate, t is time, E is Young's
modulus, 1is bending rigidity, F is the cross-sectional area (both con-
stant along the rod), p is density, and f(x,t) is a function defined by
the initial perturbations or imperfections.

The hinged rod has a length % (0 = x = ). At one end is a mass-
less support to which the shock load Ny is applied at t = 0 (this load
greatly exceeds the Euler critical load Pé). We need not consider the
conditions of attachment at the other end if we consider times such that

t<ty, to=1y/c, c=(E[pft

in which c is the speed of sound in the material.
Equation (1.2) defines the load N acting along the rod:

N=Ny, z<et), N=0 (z>¢1) (1.3)
Equation (1.1} takes the form

EIwgaxs Ny + pFwus = fz,t) 0 <z <), (1.4

The bending perturbations defined by (1.1) are unimportant for x >
>ct, and we neglect them. We also assume that

fz, =0 (x> el).

The boundary conditions for (1.4) are as follows for a variable in-
terval [4]:

W= W =0(z=10), w=uwy=0 (z=1=ct).

The initial conditions for that equation are zero:

w=w,; =0 (t=0).
It is readily shown that the asymptotes to the natural forms in loss
of stability are as follows (m —):

W) = sin(mniz/ ) (2 <D,  Wn@) =0 (23>1).(1.5)
These are the natural forms of loss of stability of a hinged rod:

W= =0 (=0, z=1I.

Consider the asymptotic solution to (1.4)
oo
wiz, 1) = 2 g, QYW (2).
m=1

We use the condition that the Wm(x) are orthogonal in a variable
interval to get for the qm(t) ordinary differential equations with varia-
ble coefficients (minor terms are omitted):

pFay” + ([ DEIm?® (mP— )qm = fl?)

(m=1,2,.). (1.6)
Here
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Let some one term #;' in the expansion be different from zero when
i< Mg Then fp(t) = 0 if ct/m is a multiple of 1p/i, while f(t) = 0
at any other instant {see (1.6)], and then for all m at t = ty we have
qmte) # 0, q;m(to) = 0, Then, if we neglectreflection from the sup-~
port x = I, for t > tp, "the forms that alter most rapidly are the ones that
correspond to the largest coefficient in the exponent in the time function
relating to the corresponding motion” [1]. This approach makes it un-
necessary to suppose equal orders of smailness for the initial perturba-
tions that correspond to different static forms of loss of stability.

Consider {1.6). The coefficient of the second term may be posi-
tive, negative, or 2zero in accordance with Ny and the number of the
equation; in the first case we have vibration, while in the other two we
have loss of stability. This coefficient has a maximum for loss of sta-
bility when

=l = V 2/Me-

Also, I* = const for a given rod with a definite compressive load,
and this wavelength is independent of the number of the equation in
{1.8).

We transform the coordinates for (1.4):

r=1z T=1t— /c.

The spatial coordinate is unaltered, while the time coordinate is
transformed into the true time of action of the compressive load at a
given point along the rod. Then (1.4) becomes

Bl — ()P w+

FNI( e — et () <PFw 4 pFw, s = flzg). (L)

It is shown below that the second terms in the brackets can be ne-
glected relative to the first. We omit these terms, and the simplified
(1.7) then has the form of (1.4). The maximum rate of increase in de~
flection occurs for wavelength 2¥%, so we construct the asymptotic solu-
tion to the simplified (1.7} as for a system with one degree of freedom:

w{z, 1) = Q (1) W* (), W*(m)zsin% 02D,

WH@)=0 (z>0). (1.8)
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After substitution, (1.8) gives for Q(r) an ordinary differeiitial equa-
tion with constant coefficients, with zero initial conditions:

Q" (v} — n*Q(v) = a*, #*= EIF)?(n/I*)%,  (1.9)
if we assume that the right side of the equation has the form
flz, 1) = a*pF sin (uz/ %) (0 < z < ap = const).
The solution to (1.9) is
Q@) = (a*/ ¥ (ch nt — 1),

We revert to the old coordinates. The following is the asymptotic
solution to (1.4) as a system with one degree of freedom for a time 1,
(/e =1, =t

n* nx .z
w(z, h) =7 [ch (nt; - i} sin’ 75~ O<<z <ety),

w{x, ) =0 (x> cty). (1.10)

The deflection occurs most rapidly at a particular wavelength, and
adjacent waves grow independently, each corresponding to its own
mean time of loading (mean true time), while the maxima (minima)
decrease exponentially away from the end to which the load is applied.

Note that if ¢ = c(x) (variable speed), the coordinate transforma-
tion is taken as

The other arguments remain in force.
Consider the errors from discarding the small terms in (1.7). The
second term in the brackets is small relative to the main one if

Pl << A

Here r is the radius of inertia of the cross-section. This condition
may be given the form N/F < E, i.e., the wavelength for loss of sta-
bility must be much greater than the radius of inertia, while the stress
must be much less than the elastic modulus, which are conditions for
(1.1) and (1.2) to apply.

The solution of (1.10) agrees well with experiment [3]. The be-
havior of a long rod in shock compression was examined by high-speed
cinematography.

If ¢ = = in (1.10), the rod may be considered as a system with one
degree of freedom, this degree corresponding to the maximum index
in the exponent [1].

2. The following is the system of equations analogous to (1.1) and
(1.2) for a three-layer rod with an initial irregularity [61:

El % — ﬁhzg—IX, xx), KXXK +
+ EF (u v ) y+pFw y=f(z,1) (2.1)
U g = pE’lu"tt (2.2)

The normal displacement w of the cross-section is defined via the

functionx:
w=x'— PP Yxx -

Here E is the reduced Young's modulus for the entire cross-section,
Iis as previously, h is the total thickness, and 9 and 8 are coefficients
for the bending rigidity of the facing layers and the shear flexibility of
the filling, with 0 = & =1, Also,p isthereduced density per unitlength
of rod. The other symbols are as before. We envisage a rod for which
h/lg <1,

A load Ny > Py is applied at t = 0 to the hinged end. The load N

acting along the rod is defined by (1.3), withc = E/p)l/2 perhaps much .

less than in a homogeneous material on account of the altered p and E.
Equation (2.1) becomes
EI(y — B2y, )y sxxx +
+ Ny — B3y, xx)y__a_cx + oF(y — WPy, xx)s 1 = f(z,8)
O<z<<h)- 2.3
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The initial conditions for (2.3} are zero, while the following are
the boundaiy conditions for a variable interval:

X =% xx = X xxzx = 0 (2 =10)
X7x=vaxx:X*.hzﬁ—l Yrax=0 (z=1=ci).

We still have (1.5) for the asymptote of the natural forms of loss of
stability. Equation (2.3) simplifies considerably for large m:

(ﬁE[X, xxxxe T N xx T OFY tth xx = — B2Bf(z, 9.

We obtain the case considered above, thus, such a rod behaves like
2 homogeneous one having 9EI as its bending rigidity.

3. Consider the buckling of a ring under a symmetrical shock load
q applied at t = 0 to the ring at rest (the loading front propagates with
a velocity v exceeding the speed of sound in the material, ¢ = (E/ p)l/ Z;

qB, d=go(— vt/ R B <ot/ R)s

gf, ) =0 (—n <P —vt/R, vt/ RP <)
We assume that load q deforms the ring without inertia (Fig. 1).
Then the equation for the motion of a ring having an initial irregular-
ity is

EIR-4w, saps T NR'zw, g+ pFw’ =1

(V= qR). (3.1)

The load is a shock one, so Ng = qqR > Pg. Equation (3.1) is con-
sidered in a variable interval, see section 1. The system with an in-
finite number of degrees of freedom is replaced by a system with one
degree of freedom, but over a variable interval.

At time 1y (0 =1y =tg, tg=7R/V), the following is the asymptotic
representation of the shape of the ring as a system with one degree of
freedom:

b0 [ o 8] e

(o<p<2).
w(@, t1)=0 B>vt1/R). (3.2)

As mx = 148, this formula differs from (1.10) only in that cos(81¢/1™y
replaces sin('lrx/l*), which is due to the symmetry of the loading. The .
passage to the limit v — < in (3.2) still applies.
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