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If an e las t i c  system is ac ted  on by a shock load considerably  in ex-  

cess of the first c r i t i c a l  va lue ,  the ra te  of increase  in  the bending is 

largest  in a form differ ing from the first [1]. The charac ter  of the mo-  

t ion is subs tant ia l ly  af fected by the wave  set up by the sudden a p p l i c a -  

t ion of the  load [2, 3], 

We can  avoid  assuming equa l  orders of smal lness  for the per turba-  

t ions corresponding to  various forms by asympto t ic  considera t ion of 

the def lec t ion  of an e las t i c  h inged  rod wi th  an i n i t i a l  i r regular i ty ;  we 

use expansion wi th  respect  to  the inherent  forms of loss of s t ab i l i ty  over 
a var iab le  in te rva l  [4]. A s impl i f i ed  me thod  is g ivenbe low for deducing 
the curved form of the rod under impac t  as a system wi th  one degree  
of f reedom.  This form is very s imi l a r  to tha t  found in tests on shock 
loading of rods [3]. An e las t ic  t h r ee - I aye r  rod is envisaged,  and also a 
uniform ring with speci f ic  condi t ions of load ing .  

1. The fol lowing is [5] the system of equat ions  tha t  t akes  account  
of in terac t ion  of long i tud ina l  and transverse vibrat ions in a uniform 
e las t i c  rod with an i n i t i a l  i r regular i ty :  

ElW, xxxx- t -EF(u,xW,  x) x-}-PFw t t = ] ( x , t ) ,  ( i . I )  

~, x x ~  P E-lu,  tt" (1.2) 

Here w and u are the normal  and long i tud ina l  d i sp lacements  of a 
cross-sect ion,  x is the  long i tud ina l  coordinate ,  t is t ime ,  E is Young's 

modulus,  I is bending  r ig id i ty ,  F is the c ross -sec t iona l  area (both con-  

stant a long the rod), p is densi ty,  and J:(x,t)  is a function defined by 

the i n i t i a l  perturbat ions or imper fec t ions .  

The hinged rod has a length/.0 (0 __< x -< /-0)- At one end is a mass-  

less support to which the shock load No is appl ied  at  t = 0 (this load 

g rea t ly  exceeds  the Euler c r i t i c a l  load Pc)" We need not consider the 

condit ions of a t t a chmen t  a t  the other end i f  we consider t imes  such that  

t ~ to, t o = t o / c ,  c = (E / p)'l', 

in which c is the  speed of sound in  the m a t e r i a l  

Equation (1.2) defines the load N ac t ing  a long the rod: 

N = 1 %  (~ < ct), N = O (re>let) (I.3) 

Equation (1.1) takes  the  form 

EIw,xxxx ~ Nw,~r + pFw,t t = ](z,t) (0 ~ m ~ to) .  (1.4) 

The bending perturbat ions def ined by ( 1 . t )  are unimpor tant  for x > 
> ct ,  and we neg lec t  t hem.  We also assume tha t  

l(m, t) =_ 0 (~ > a).  

The boundary condit ions for (1.4) are as follows for a va r i ah i e  in-  

t e rva l  [4]: 

w = w,= = O (z = O), w = w,~ = O (m = l = ct). 

The i n i t i a l  condi t ions for tha t  equa t ion  are zero:  

w = w,t = O ( t =  O). 

It is read i ly  shown that  the asymptotes  to the natura l  forms in loss 
of s t ab i l i ty  are as follows (m -+~o): 

Wra(X) = sin(mzr~m/l) (x < 1), Wm(x ) = 0 (x ~ l). (1 .5)  

These are the na tura l  forms Of loss of s t ab i l i ty  of a hinged rod: 

w =  w , . ~ =  0 ( x = O ,  x = l ) .  

Consider  the asympto t i c  solut ion to (1.4) 

w (x, t) = ~ qm (t) W ~  (x). 

We use the condi t ion  that  the Win(x) are or thogonal  in  a v a r i a b l e  

in te rva l  to get  for the qm(t)  ordinary d i f fe ren t i a l  equat ions  wi th  va r i a -  

b le  coef f ic ien ts  (minor  terms are omi t ted) :  

pFqm" + (~ [ l)aEIm ~ (m S -  lll)qm = Ira(t) 

(m = t ,  2,.. .).  (1.6) 

Here 

l = ct, rl~ = N .'~EI 
P-~e ' P e n - - i f - .  ' 

l 

] m ( t ) =  + i  [(m't)Sinm~xl dm 
o 

:for t =  t o 

lo 
No p o r ~ S E 1  ] r a O = ~ o ! [ ( x )  sinm~XXdx 

~l~176 : pc-'-5' e lo ~ ' I0 

Let some one t e rm yi ~ in the expans ion be di f ferent  from zero when 

i < ~0. Then fro(t) = 0 if  e t / m  is a m u l t i p l e  of lo/i, whi le  fro(t) ~ 0 
at  any other instant  [see (1.6)],  and then for a l l  m at t = t o we have  

qm(t0) ~ O, qm(t0) m 0. Then,  if  we n e g l e c t r e f l e e t i o n  from the sup- 
port x = l 0 for t > t0, " the forms tha t  a l ter  most  rap id ly  are the ones that  

correspond to the la rges t  coef f ic ien t  in the exponent  in the t i m e  funct ion 

re la t ing  to the corresponding mot ion"  [3]. This approach makes  i t  un- 

necessary to suppose equa l  orders of smal lness  for the i n i t i a l  per turba-  

t ions tha t  correspond to different  s ta t ic  forms of loss of s t ab i l i ty .  
Consider (1.6).  The coef f i c i en t  of the second t e rm may  be posi-  

t ive ,  nega t ive ,  or zero in  accordance  with No and the  number  of the 
equat ion;  in the first case we have  vibrat ion,  whi le  in the other two we 
have  loss of s tabi l i ty .  This coef f ic ien t  has a m a x i m u m  for loss of sta-  

b i l i ty  when 

~* ~ t/, .  = Y'~t0/qo. 

Also, l* = const for a g i v e n  rod wi th  a de f in i t e  compress ive  load,  

and this wa,velength is independent  of the number  of the equa t ion  in  

(i.6). 
We transform the coordinates for (1.4): 

The spa t ia l  coordinate  is unal tered ,  whi le  the t i m e  coord ina te  is 

t ransformed into the true t i m e  of ac t ion  of the compress ive  load at a 

g iven  point  a long  the  rod, Then (1.4) becomes  

EZ[( ),~ - -  c-~ ( ),-. ]4 w + 

+ N [ ( ), x - -  e -z ( ), ~ ]~ w + pFw, .~ = I(xG). (1.7) 

tt is shown below tha t  the second terms in  the brackets  can  be ne-  

g l ec t ed  r e l a t i v e  to the first .  We omi t  these terms,  and the s impl i f i ed  

(1.7) then  has the form of (1.4).  The m a x i m u m  ra te  of increase  in .de -  

f l ec t ion  occurs for wave leng th  I*, so we construct  the asympto t i c  solu-  

t ion  to the s impl i f i ed  (1.7) as for a system wi th  one degree  of  f reedom:  
Jtsc 

w ( x , T ) = Q ( r ) W * ( x ) , '  W* (z) = s i n ~ -  (O~<x~<l), 

W* (~.) = 0 (z > 0 .  (1.8) 

2 7 5  



After substitution, (1.8) gives for Q(T) an ordinary differeritial equa- 
tion with constant coefficients, with zero initial conditions: 

Q" ('c) - -  n~Q(z) = a*, n 2 = EI(OF) -1 (n / l*)~, (1.9) 

if we assume that the right side of the equation has the form 

/(x, "~) = a*pF sin (~x / l*) (0 < x ~ a0 =- const). 

The solution to (1.9) is 

Q(~) = (a* / n 2) (oh n~ - -  t1,: 

We revert to the old coordinates. The following is the asymptotic 
solution to (1.4) as a system with one degree of freedom for a time tl 

(a0/c  ~ t l  -< to): 

a* [ c h ( n q - -  n - ~ ) - - t J s i n ~ .  (0~<x<r  w (z, h) = -y.  

w(x,  t a )=0  ( x ) c t l ) .  (1.10) 

The deflection occurs most rapidly at a particular wavelength, and 
adjacent waves grow independently, each corresponding to its own 

mean time of loading (mean true time), while the maxima (minima) 
decrease exponentially away from the end to which the load is applied. 

Note that if c = c(x) (variable speed), the coordinate transforma- 

tion is taken as 

ae 

z = ~ ,  ~ = t - ~  d~ 
.~ c (~)" 
0 

The other arguments remain in force. 
Consider the errors from discarding the small terms in (1.7). The 

second term in the brackets is small relative to the main one if 

r / l *  < <  t; 

Here r is the radius of inertia of the cross-section. This condition 
may be given the form N/E << E, i . e . ,  the wavelength for loss of sta- 
bility must be much greater than the radius of inertia, while the stress 
must be much less than the elastic modulus, which are conditions for 
(1.1) and (1.2) to apply. 

The solution of (1,10) agrees well with experiment [3]. The be- 
havior of a long rod in shock compression was examined by high-speed 

cinematography. 
If c --~ *~ in (1.10), the rod may be considered as a system with one 

degree of freedom, this degree corresponding to the maximum index 
in the exponent [1]. 

2. The following is the system of equations analogous to (1.1) and 
(1.2) for a three-layer rod with an initial irregularity [6]: 

E1 (X -- ~h~,~-lX, xx ), xxzx + 

+ EF(u ,  xW, x ) , x + p Y w ,  t t = l ( ~ , t )  (2.1) 

u, xx = PE-lu,tt (2.2) 

The normal displacement w of the cross-section is defined via the 

function X: 

w = Z - -  h ~  -~ X,=x. 

Here E is the reduced Yotmg's modulus for the entire cross-section, 
I is as previously, h is the total thickness, and & and $ are coefficients 
for the bending rigidity of the facing layers and the shear flexibility of 
the filling, with 0 -< I~ ~ 1. Also,p is the reduced density per unit length 
of rod. The other symbols are as before. We envisage a rod for which 
h/l~ << 1. 

A load No >> P~ is applied at t = 0 to the hinged end. The load N 
acting along the rod is defined by (1.3), with c = E/p)~/z perhaps much 
less than in a homogeneous material on account of the altered p and E. 

Equation (2.1) becomes 

E I ( z  - -  Oh~-~g, xx), xxxx + 

+ N(Z -- h~-~X, xx), xx + PF(x - -  h~-IZ, xx), tt = [(x,t) 

(0 < x ~< lo). (2.3) 

V 

# 
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The initial conditions for (2.3) are zero, while the following are 
the boundary conditions for a variable interval: 

Z =  X, x x =  Z, x x x ~ = O  ( z = O )  

X,~ = Z,~= = Z ~ h~[ ~-I Z, ~ =  O (z = l = ct). 

We still have (1.5) for the asymptote of the natural forms of loss of 
stability. Equation (2.3) simplifies considerably for large m: 

( r  . . . .  x + aX,  xx + oFz, ti), xx = - -  h-Z~t/( x, t). 

We obtain the case considered above, thus, such a rod behaves like 
a homogeneous one having ~EI as its bending rigidity. 

3. Consider the buckling of a ring under a symmetrical shock load 
q applied at t = 0 to the ring at rest (the loading front propagates with 
a velocity v exceeding the speed of sound in the material, c = (E/p)l /z:  

a(~, t) = qo ( -  vt / R < ~ ..< vt / R), 

q(~, t ) = 0  ( -  ~ ..< ~ < - v t /  n, vt/  R < f ~ < z ) .  

We assume that load q deforms the ring without inertia (Fig. 1). 
Then the equation for the motion of a ring having an initial irregular- 

ity is 

EIR'~w, ~ + NR-ho,  t~ + pFw, ~t= ] (~), 

(N = qR). (3.1) 

The load is a shock one, so No = qoR >> Pe. Equation (3.1) is con- 
sidered in a variable interval, see section 1. The system with an in- 

finite number of degrees of freedom is replaced by a system with one 
degree of freedom, but over a variable interval. 

At time tr (0 <- t 1 -< t0~ t o = 7rR/v), the following is the asymptotic 
representation of the shape of the ring as a system with one degree of 
freedom: 

g *  

'.) = ( ~  '1 o o s  

w(~, t f l = 0  (~>~vh /R) .  (3.2) 

As 7rx = 10$, this formula differs from (1.10) only in that cos($lo/ l*)  
replaces sin0rx/l*), which is due to the symmetry of the loading. The 
passage to the limit v -~ ~ in (3.2) still applies. 
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